Although there are many forms of cancer, for the most part, most cancers develop in similar ways and use similar methods.
It is now becoming more widely accepted that cancer is not pre-programmed into your genes, but rather it is the environment of your body that regulates your genetic expression that can trigger cancer to occur.
Adverse epigenetic influences that can negatively affect cell division and damage or mutate DNA and alter genetic expression, allowing cancer to proliferate, include the following factors:
-- Chronic inflammation
-- Free radical damage (oxidative stress)
-- Hormonal imbalances
-- Toxins and pollution
-- Chronic infections -- Nutritional deficiencies
-- Chronic stress; negative thoughts and emotional conflicts
-- Other health issues, e.g. diabetes, obesity, autoimmune disease
It is now becoming more widely accepted that cancer is not pre-programmed into your genes, but rather it is the environment of your body that regulates your genetic expression that can trigger cancer to occur.
Adverse epigenetic influences that can negatively affect cell division and damage or mutate DNA and alter genetic expression, allowing cancer to proliferate, include the following factors:
-- Chronic inflammation
-- Free radical damage (oxidative stress)
-- Hormonal imbalances
-- Toxins and pollution
-- Chronic infections -- Nutritional deficiencies
-- Chronic stress; negative thoughts and emotional conflicts
-- Other health issues, e.g. diabetes, obesity, autoimmune disease
Cell Division
The most common form of cell division is called mitosis. It is used for growth and repair. During mitosis, a cell makes an exact copy of itself and splits into two new cells. Each cell contains an exact copy of the original cell's chromosomes in their 23 pairs. This is the reason why all the cells in an organism are genetically identical.
Cells do not live forever -- they follow a normal cell cycle and they will reach a point where they will divide through mitosis, or die through a process called apoptosis.
There are two types of genes that normally control the cell cycle: proto-oncogenes, which start cell division and tumor-suppressor genes, which turn off cell division. These two genes work together, one turning on cell division when the body needs to repair or replace tissue, and the other turning off cell division when the repairs have been made. If the proto-oncogenes become mutated, they can become oncogenes -- genes that lead to uncontrolled cell division. Mutations in the tumor-suppressor genes result in the cell not having the ability to turn off cell division.
Cancer: Cell Division (Mitosis) Out of Control
Cancer cells are the exception, these cells do not die and divide uncontrollably as they crowd out healthy, productive cells. Cancer can have many causes, but most are thought to be related to carcinogens in the environment.
Carcinogens are substances that can weaken the immune system and weaken the cell wall -- allowing the cell wall to become damaged or penetrable from microbes and other pathogens (e.g. bacteria, viruses, fungi) in the body. (Carcinogens may include foods, beverages, chemicals, tobacco, environmental toxins, medications, pesticides, cosmetics, etc.)
Scenario #1: When a cell becomes weak and is bombarded by free radicals (via inflammation and/or oxidative stress from carcinogens, toxins, etc.) for years, this oxidation causes damage to the cell and its nucleus and each time the cell divides, there is some DNA/gene damage that is not corrected and repaired and is passed on to the next cell division. This continues until a mutation occurs that causes the cell to start dividing out of control and apoptosis (cell death) is blocked. And, if this process continues over many years, then, the damaged cell may eventually turn cancerous.
Scenario #2: When a cell becomes weak and is bombarded by free radicals (via inflammation and/or oxidative stress from carcinogens, toxins, etc.) for years, the weakened cell wall may be penetrated by pathogens/microbes, which cause damage inside the cells, including an increase in oxidation that causes damage to the cell and its nucleus and each time the cells divide, there is some DNA/gene damage that is not corrected and repaired and is passed on to the next cell division. This continues until a mutation occurs that causes the cell to start dividing out of control and apoptosis (cell death) is blocked. And, if this process continues over many years, then, the damaged cell may eventually turn cancerous.
These pathogens/microbes are believed to initially be harmless -- until after years of the body accumulating various toxins and causing cellular/tissue damage in combination with other events (e.g. high stress, insomnia, weight gain, inflammation, oxidation, other diseases), these microbes transform into harmful microbes. It is believed that these microbes are pleomorphic, that is they have the ability to assume different forms in response to environmental conditions and changes.
When these microbes are able to penetrate the cell wall, they interrupt and consume the glucose going to the mitochondria (the cell's powerhouse) and begin to multiply. As they multiply, they excrete poisonous mycotoxins creating a very acidic environment inside the cell. In the meantime, the cell becomes "tired" because the mitochondria is unable to produce energy (ATP). At this point, the cell has become cancerous.
When some of the microbes penetrate the cell's nucleus, this causes damage to the cell's DNA/genes and interferes with the cell's normal cycle, thus disrupting the cell's ability to control when and how often it divides.
Mitosis is closely controlled by the genes inside every cell. But, if the DNA/genes are damaged, this tight control over mitosis is lost and the newly-formed cancerous cell divides out of control. And, when the cancerous cell divides, it replicates the damage it just created and includes some of the microbes in each of the new cancerous cells.
These cancer cells continue to replicate rapidly without the control systems that normal cells have plus they don't have the built-in suicide program (apoptosis) that normal cells have after dividing x number of times. Instead the cancer cells never trigger apoptosis.
With each succeeding division, the cancer cells accumulate more genetic mistakes that make the tumor grow bigger, invade local tissues and eventually spread (metastasize) to other parts of the body.
The cancer cells produce less energy (2 ATP molecules vs 38 ATP molecules for a normal cell) and, as a byproduct of the glucose fermentation, most types of cancer cells dump lactic acid into the bloodstream. The lactic acid is sent to the liver, which converts it to glucose and returns the glucose back to the cells. This cycle can tire out a cancer patient and cause his body to begin wasting away. Refer to the Lactic Acid Cycle blog post for more details.
In addition, the cancer cells release their own enzymes that help the cell form a slimy, protein covering that "hides" the cancer cells from the immune system. The immune system contains several types of immune cells (white blood cells), some of which have the ability to kill foreign cells, bacteria and other pathogens. For more details, refer to the blog post about the immune system.
Note: The anatomy of a cancer cell is different than a normal cell. Morphologically, the cancer cell is characterized by a large nucleus, having an irregular size and shape, the nucleoli are prominent, the cytoplasm is scarce and intensely colored or pale. For more details, refer to the blog post Cancer Cell Anatomy.
Cancer Tumor Development
Eventually, the cancer cells form lumps, or tumors, which use the lactic acid to grow and cause damage to the surrounding tissues. As the tumor gets bigger, the center of it gets further and further away from the blood vessels in the area where it is growing. So the center of the tumor gets less and less of the oxygen and the other nutrients all cells need to survive.
Like healthy cells, cancer cells cannot live without oxygen and nutrients although they prefer an anaerobic environment to to grow. In order to obtain nutrients, the cancer cells send out signals or recruit our own macrophages (from the immune system) to trigger an inflammation response and send out signals (called angiogenic growth factors). These signals encourage new blood vessels to form and grow into the tumor. This is called angiogenesis. Without a blood supply, a tumor cannot grow much bigger than a pin head.
Once a cancer can stimulate blood vessel growth, it can grow bigger and grow more quickly and produce even more lactic acid. The tumor will stimulate the growth of hundreds of new capillaries from the nearby blood vessels to bring it nutrients and oxygen.
Tumor Growing and Spreading
As a tumor gets bigger, it takes up more room in the body and can then cause pressure on surrounding structures. It can also grow directly into body structures nearby. This is called local invasion.
Some normal cells (e.g. immune cells) produce chemicals called enzymes that break down cells and tissues. The cells use the enzymes to attack invading bacteria and viruses. They also use them to break down and clear up damaged areas in the body. The damaged cells have to be cleared away so that the body can replace them with new ones. This is all part of the natural healing process.
Many cancers contain larger amounts of these enzymes than normal tissues. Some cancers also contain a lot of normal white blood cells, which produce the enzymes. The white blood cells* are part of the body's immune response to the cancer.
One of the things that makes cancer cells different to normal cells is that they (and the microbes inside) can move about more easily. This makes it easier for cancer to spread to another part of the body to form multiple secondaries or metastases.
*Note: There are several different types of white blood cells that are part of the immune system. The immune system responds to infection, or anything else the body recognizes as 'foreign'. Refer to the blog post that explains how the immune system and its cells function.
Cancer and Oxygen
Cancer,
above all other diseases, has countless secondary causes. But, even for
cancer, there is only one primary cause. Summarized in a few words, the
prime cause of cancer is the replacement of the respiration of oxygen
in normal body cells by a fermentation of sugar. All normal body cells
meet their energy needs by respiration of oxygen, whereas cancer cells meet their energy needs in great part by fermentation. All normal body cells are thus obligate aerobes, whereas all cancer cells are partial anaerobes."
Poor oxygenation comes
from a buildup of carcinogens and other toxins within and around cells,
which blocks and then damages the cellular oxygen respiration mechanism.
Clumping up of red blood cells slows down the bloodstream, and
restricts flow into capillaries. This also causes poor oxygenation. Even
lack of the proper building blocks for cell walls, Omega 3 essential
fatty acids, restricts oxygen exchange.
Warburg and other
scientists found that the respiratory enzymes in cells, which make
energy aerobically using oxygen, die when cellular oxygen levels drop
to.
When the mitochondrial enzymes
get destroyed, they're host cell can no longer produce all its energy
using oxygen. So, if the cell is to live, it must, to some degree,
ferment sugar to produce energy. For a short period of time, like when
running a race, this anaerobic fermentation of sugar is okay. Your legs
build up lactic acid from this fermentation process and burn, and you
stop running. Then your cells recover and produce energy using oxygen.
However the problem comes when your cells cannot produce energy using
oxygen because of this damage to the respiratory enzymes. Then they must
produce energy primarily by fermentation most of the time. This is what
can cause a cell to turn cancerous.
According to Warburg, cells that produce energy by fermenting sugars may turn cancerous. Warburg's contention is this...
The cells that cannot
produce energy aerobically, cannot produce enough energy to maintain
their ability to function properly. So they lose their ability to do
whatever they need to do in the body.
Fermentation allows
these cells to survive, but they can no longer perform any functions in
the body or communicate effectively with the body. Consequently, these
cells can only multiply and grow. And may become cancerous. Or perhaps
it would be more accurate to say, they degrade into cancer cells that no
longer serve your body, but live to survive...
Decades ago, two
researchers at the National Cancer Institute, Dean Burn and Mark Woods,
(Dean translated some of Warburg's speeches) conducted a series of
experiments where they measured the fermentation rate of cancers that
grew at different speeds. What they found supported Dr. Warburg's
theory.
- See more at: http://www.cancerfightingstrategies.com/oxygen-and-cancer.html#sthash.s35ok650.QfSwbilj.dpufIn newly formed cells, low levels of oxygen damage respiration enzymes so that the cells cannot produce energy using oxygen. These cells can then turn cancerous.
In 1931 Dr. Warburg won his first Nobel Prize for proving cancer is caused by a lack of oxygen respiration in cells. He stated in an article titled "The Prime Cause and Prevention of Cancer...the cause of cancer is no longer a mystery, we know it occurs whenever any cell is denied 60% of its oxygen requirements..."
"Cancer, above all other diseases, has countless secondary causes. But, even for cancer, there is only one primary cause. Summarized in a few words, the prime cause of cancer is the replacement of the respiration of oxygen in normal body cells by a fermentation of sugar. All normal body cells meet their energy needs by respiration of oxygen, whereas cancer cells meet their energy needs in great part by fermentation. All normal body cells are thus obligate aerobes, whereas all cancer cells are partial anaerobes."
Poor oxygenation comes from a buildup of carcinogens and other toxins within and around cells, which blocks and then damages the cellular oxygen respiration mechanism. Clumping up of red blood cells slows down the bloodstream, and restricts flow into capillaries. This also causes poor oxygenation. In addition, the proper building blocks for cell walls, Omega-3 essential fatty acids, restricts oxygen exchange.
When the mitochondrial enzymes get destroyed, they're host cell can no longer produce all its energy using oxygen. So, if the cell is to live, it must, to some degree, ferment sugar to produce energy. For a short period of time, like when running a race, this anaerobic fermentation of sugar is okay. Your legs build up lactic acid from this fermentation process and burn, and you stop running. Then your cells recover and produce energy using oxygen. However the problem comes when your cells cannot produce energy using oxygen because of this damage to the respiratory enzymes. Then they must produce energy primarily by fermentation most of the time. This is what can cause a cell to turn cancerous.
The cells that cannot produce energy aerobically, cannot produce enough energy to maintain their ability to function properly. So they lose their ability to do whatever they need to do in the body.
Fermentation allows these cells to survive, but they can no longer perform any functions in the body or communicate effectively with the body. Consequently, these cells can only multiply and grow. And may become cancerous. Or perhaps it would be more accurate to say, they degrade into cancer cells that no longer serve your body, but live to survive...
Decades ago, two researchers at the National Cancer Institute, Dean Burn and Mark Woods, (Dean translated some of Warburg's speeches) conducted a series of experiments where they measured the fermentation rate of cancers that grew at different speeds. What they found supported Dr. Warburg's theory.
The cancers with the highest growth rates had the highest fermentation rates. The slower a cancer grew, the less it used fermentation to produce energy.
Low oxygen levels in cells may be a fundamental cause of cancer. There are several reasons cells become poorly oxygenated. An overload of toxins clogging up the cells, poor quality cell walls that don't allow nutrients into the cells, the lack of nutrients needed for respiration, poor circulation and perhaps even low levels of oxygen in the air we breathe.
Cancer cells produce excess lactic acid as they ferment energy. Lactic acid is toxic, and tends to prevent the transport of oxygen into neighboring normal cells. Over time as these cells replicate, the cancer may spread if not destroyed by the immune system.
Chemotherapy and radiation are used because cancer cells are weaker than normal cells and therefore may die first. However, chemo and radiation damage respiratory enzymes in healthy cells, and overload them with toxins, so they become more likely to develop into cancer! The underlying cancer causing conditions are worsened, not improved. And the cancer usually returns quickly and stronger unless you make changes to support the health of your body.
The implication of this research is that an effective way to support the body's fight against cancer would be to get as much oxygen as you can into healthy cells, and improving their ability to utilize oxygen. Raising the oxygen levels of normal cells would help prevent them from becoming cancerous. And increasing oxygen levels in cancer cells to high levels could help kill those cancer cells.
A nurse who works in medical research said, "It's so simple. I don't know why I never thought of it before. When we're working with cell cultures in the lab, if we want the cells to mutate, we turn down the oxygen. To stop them, we turn the oxygen back up."
But, it is not easy to get additional oxygen into cells. Most approaches don't work well. Breathing oxygen is still limited by the amount of hemoglobin available, and pH levels. Dr. Whittaker points out, quite rightly, that liquid oxygen supplements that release oxygen into the blood, which most of them only do, can't get oxygen into the cells.
He explains that a delivery mechanism is needed to transport oxygen into cells. And though the typical oxygen supplement gets oxygen into the blood, that doesn't mean it gets into the cells.
There are several ways to significantly increase oxygen levels in your cells so that you can kill cancer cells and also prevent them from spreading. The most effective way is to use a hydrogen peroxide protocol (under the care of a healthcare professional) or take an oxygen supplement that will literally produce much more oxygen in your cells.
A safer way is to eat sulfur-based foods (e.g. Brussels sprouts, garlic) along with Omega-3 rich foods (e.g. wild salmon, flax oil, cod liver oil) that will make the cell walls more permeable. And, eat chlorophyll-rich foods (e.g. wheatgrass, chlorella) along with the Omega-3s to help transport more oxygen to the cells. And use substances such as MSM, cesium chloride, pancreatic enzymes, etc. to help penetrate the cell walls of cancer cells.
Note: Refer to the specific treatment protocols that explain this in detail.
You can also increase the efficiency of the mitochondria, enabling it to utilize the oxygen to create energy aerobically. The mitochondria that become damaged by the lack of oxygen cannot produce energy using oxygen, leading to the development of cancerous cells.
And finally, you can enhance circulation, reduce blood viscosity and reduce cellular inflammation so that more oxygen and vital nutrients get to your cells. By increasing oxygen in your cells, and its utilization, you will go a long way towards eliminating cancer.
How Cancers Grow and Spread
If left untreated, cancers often go through three stages:
1. Local growth and damage to nearby tissues
Cancer cells multiply quickly. A cancerous (malignant) tumor is a lump or growth of tissue made up from cancer cells. Cancerous tumors normally first develop in one site - the primary tumour.
However, to get larger, a tumor has to develop a blood supply to obtain oxygen and nourishment for the new and dividing cells. In fact, a tumor would not grow bigger than the size of a pinhead if it did not also develop a blood supply. Cancer cells make chemicals that stimulate tiny blood vessels to grow around them which branch off from the existing blood vessels. This ability for cancer cells to stimulate blood vessels to grow is called angiogenesis.
Cancer cells also have the ability to push through or between normal cells. So, as they divide and multiply, cancer cells invade and damage the local surrounding tissue.
Some cancer cells may get into local lymph channels. (The body contains a network of lymph channels which drains the fluid called lymph which bathes and surrounds the body's cells.) The lymph channels drain lymph into lymph nodes. There are many lymph nodes all over the body. A cancer cell may be carried to a lymph node and there it may become trapped. However, it may multiply and develop into a tumor. This is why lymph nodes that are near to a tumor may enlarge and contain cancer cells.
3. Spread to other areas of the body
Some cancer cells may get into a local small blood vessel (capillary). They may then get carried in the bloodstream to other parts of the body. The cells may then multiply to form secondary tumors (metastases) in one or more parts of the body. These secondary tumors may then grow, invade and damage nearby tissues, and spread again.
Cancer Staging
Staging is a way of describing how much a cancer has grown and spread. A common way of staging cancer is called the TNM classification:
- T stands for tumor - how far the primary tumor has grown locally.
- N stands for nodes - if the cancer has spread to the local lymph glands (nodes).
- M stands for metastases - if the cancer has spread to other parts of the body.
- T-1 means the primary tumor is still in the stomach wall. T-3 means the primary tumor has grown right through the stomach wall and T-4 means it is invading nearby structures such as the pancreas.
- N-0 means there is no spread to lymph nodes. N-1 means that some local lymph nodes are affected. N-2 means more extensive spread to local lymph nodes.
- M-0 means there are no metastases. M-1 means that there are metastases to some other area of the body such as the liver or brain.
There are other staging classifications which are sometimes used for various cancers. For example, a number system is used for some cancers. That is, a cancer may simply be said to be stage 1, 2, 3 or 4 (or stage I, II, III, or IV).
Again, the stages reflect how large the primary tumor has become, and whether the cancer has spread to lymph nodes or other areas of the body. It can become complicated as each number may be subdivided into a, b, c, etc. For example, you may have a cancer at stage 3b. A grade 4 stage is often referred to as an advanced cancer.
Cancer Grading
Some cancers are also graded. A sample of the cancer (a biopsy) is looked at under the microscope or tested in other ways. By looking at certain features of the cells, the cancer can be graded as low, intermediate or high.
- Low-grade means the cancer cells tend to be slow-growing, look quite similar to normal cells (are well differentiated), tend to be less aggressive, and are less likely to spread quickly.
- Intermediate-grade is a middle grade.
- High-grade means the cancer cells tend to be fast growing, look very abnormal (are poorly differentiated), tend to be more aggressive, and are more likely to spread quickly.
Another example is prostate cancer which is graded by a Gleason score. This is similar to other grading systems with a low Gleason score meaning much the same as low-grade, and a high Gleason score meaning much the same as high-grade.
For some cancers, a doctor will use the information about the grade as well as the stage of the cancer when advising about treatment options, and when giving an opinion about outlook (prognosis).
Cancer Pathogenesis
The
cancers with the highest growth rates had the highest fermentation
rates. The slower a cancer grew, the less it used fermentation to
produce energy. - See more at:
http://www.cancerfightingstrategies.com/oxygen-and-cancer.html#sthash.s35ok650.QfSwbilj.dpuf
The following
diagram is a high level depiction of how a general cancer develops in
the human body. Refer to the training program or science ebook for more
details. Please Note! DNA damage is not the cause of cancer! Something caused the DNA to be damaged. Blaming the cause of the cancer on DNA damage is like blaming smoke as the cause of a fire. Instead it appears that there are several biological dysfunctions that damage or mutate DNA and alter genetic expression, allowing cancer to proliferate. These biological dysfunctions include the following:
-- Chronic inflammation
-- Free radical damage (oxidative stress)
-- Hormonal imbalances
-- Toxicity overload
-- Chronic infections -- Nutritional deficiencies
Another concept about how cancer develops is the belief that the aforementioned biological dysfunctions trigger (pleomorphic) microbes to penetrate the cell wall, which has been weakened by inflammation, oxidation, toxic foods and a toxic environment. Once inside the cell, these microbes intercept the incoming glucose, and, then, begin to multiply and secrete mycotoxins, creating an acidic environment within the cell. In the meantime, the cell cannot function because of the low ATP and acidic environment and the cell becomes a cancer cell. Eventually, the toxic environment in combination with some of the microbes invading the nucleus and causing damage to the cell's nucleus, leads to the DNA and genes (in the nucleus) becoming damaged.
Of course, how cancer develops is a lot more complex than this. We will get into more details of cancer pathogenesis and pathophysiology in future blog posts; and, also in the science book and training program.
Cancer Cell Attributes
When a cell becomes cancerous, it develops traits that normal cells do not have. For instance, a cancer cell can have unusual number of chromosomes due to incomplete mitosis or cytokinesis.
Cancer cells may be abnormally shaped or larger than normal cells. Cancer cells also can lose their attachment to nearby tissue and travel to other parts of the body, where they continue dividing and causing problems at other locations. Secondary growths of cancer at a distance from the primary site are referred to as metastasis.
Cancer cells take essential nutrients from the blood to grow and divide and crowd out other cells that have important jobs. In the case of leukemia, white blood cells grow uncontrollably and crowd out the red blood cells, thus reducing an individual's ability to deliver nutrients to the body and affecting the blood's ability to clot and repair wounds.
Cancer Risk Factors
According to the World Health Organization (WHO), common risk factors for cancer include:
-- Tobacco use
-- Alcohol use
-- Overweight/obesity (High inflammation)
-- Cardiovascular problems (High inflammation, High blood pressure)
According to the World Health Organization (WHO), common risk factors for cancer include:
-- Tobacco use
-- Alcohol use
-- Overweight/obesity (High inflammation)
-- Cardiovascular problems (High inflammation, High blood pressure)
-- Diabetes (High blood sugar, High insulin)
-- Dietary factors (Cellular starvation, Weakened immunity)
(including intake of substances such as trans fats, HFCS, insufficient vegetables/fruits)
-- Sedentary lifestyle (Lack of oxygen, Stagnant lymph system)
-- Stress (High cortisol, Burned out Adrenal glands)
-- Insomnia (No melatonin production during REM)
-- Chronic infections from helicobacter pylori, hepatitis B virus (HBV), hepatitis C virus (HCV) and some types of human papilloma virus (HPV)
-- Environmental and occupational risks including ionizing and non-ionizing radiation
-- Dietary factors (Cellular starvation, Weakened immunity)
(including intake of substances such as trans fats, HFCS, insufficient vegetables/fruits)
-- Sedentary lifestyle (Lack of oxygen, Stagnant lymph system)
-- Stress (High cortisol, Burned out Adrenal glands)
-- Insomnia (No melatonin production during REM)
-- Chronic infections from helicobacter pylori, hepatitis B virus (HBV), hepatitis C virus (HCV) and some types of human papilloma virus (HPV)
-- Environmental and occupational risks including ionizing and non-ionizing radiation
Note: The items listed in the diagram are not causes of
cancer -- they are risk factors that cause cell damage to various
tissues and organs, which, in turn, weakens the body's immune system and
makes the body more susceptible to developing cancerous cells.
What is Cancer?
Here are some web links that explain what is cancer, what causes cancer, and how cancer develops:
http://www.cancertutor.com/what_causes_cancer/
http://www.cancercompass.com/cancer-guide/your-diagnosis/how-cancer-develops.html
http://www.cancercompass.com/cancer-guide/your-diagnosis/cancer-stages.html
http://www.cancerresearchuk.org/about-cancer/what-is-cancer/how-cancer-starts
http://www.merckmanuals.com/home/cancer/overview-of-cancer/development-and-spread-of-cancer
http://www.hope4cancer.com/information/microbes-cause-cancer.html
http://cancerpreventionresearch.aacrjournals.org/content/1/1/15.full
Author's Note: Doctors told me that I was wasting my time trying to educate myself about diabetes. They said that acquiring knowledge about diabetes would only frustrate me and take my focus away from the drug treatments and what the doctors wanted me to do. When I was in the hospital and I told the doctors about the research I found on the Internet, they just rolled their eyes and warned me to stay off the Internet.
Types of Cancer
There are more than 100 forms of cancer. Cancers are classified by the type of cell that the tumor resembles and is therefore presumed to be the origin of the tumor. These types include:
For some common cancers, the English organ name is used. For example, the most common type of breast cancer is called ductal carcinoma of the breast. Here, the adjective ductal refers to the appearance of the cancer under the microscope, which suggests that it has originated in the milk ducts.
Benign tumors (which are not cancers) are named using -oma as a suffix with the organ name as the root. For example, a benign tumor of smooth muscle cells is called a leiomyoma (the common name of this frequently occurring benign tumor in the uterus is fibroid). Confusingly, some types of cancer also use the -oma suffix, examples including melanoma and seminoma.
YouTube Videos
Here are a couple of the many videos on YouTube about how cancer starts (and immune system/macrophages), cancer microbes, cures and other similar topics.
Cancer Website References and Terminology
To understand cancer and how it develops, here are some websites that explain many of the terms used in discussing cancer.
What is Cancer?
Here are some web links that explain what is cancer, what causes cancer, and how cancer develops:
http://www.cancertutor.com/what_causes_cancer/
http://www.cancercompass.com/cancer-guide/your-diagnosis/how-cancer-develops.html
http://www.cancercompass.com/cancer-guide/your-diagnosis/cancer-stages.html
http://www.cancerresearchuk.org/about-cancer/what-is-cancer/how-cancer-starts
http://www.merckmanuals.com/home/cancer/overview-of-cancer/development-and-spread-of-cancer
http://www.hope4cancer.com/information/microbes-cause-cancer.html
http://cancerpreventionresearch.aacrjournals.org/content/1/1/15.full
Author's Note: Doctors told me that I was wasting my time trying to educate myself about diabetes. They said that acquiring knowledge about diabetes would only frustrate me and take my focus away from the drug treatments and what the doctors wanted me to do. When I was in the hospital and I told the doctors about the research I found on the Internet, they just rolled their eyes and warned me to stay off the Internet.
Types of Cancer
There are more than 100 forms of cancer. Cancers are classified by the type of cell that the tumor resembles and is therefore presumed to be the origin of the tumor. These types include:
- Carcinoma: Cancer derived from epithelial cells. This group includes many of the most common cancers, including those of the breast, prostate, lung and colon.
- Sarcoma: Cancer derived from connective tissue, or mesenchymal cells.
- Lymphoma and leukemia: Cancer derived from hematopoietic (blood-forming) cells
- Germ cell tumor: Cancer derived from pluripotent cells. In adults these are most often found in the testicle and ovary, but are more common in babies and young children.
- Blastoma: Cancer derived from immature "precursor" or embryonic tissue. These are also commonest in children.[citation needed]
For some common cancers, the English organ name is used. For example, the most common type of breast cancer is called ductal carcinoma of the breast. Here, the adjective ductal refers to the appearance of the cancer under the microscope, which suggests that it has originated in the milk ducts.
Benign tumors (which are not cancers) are named using -oma as a suffix with the organ name as the root. For example, a benign tumor of smooth muscle cells is called a leiomyoma (the common name of this frequently occurring benign tumor in the uterus is fibroid). Confusingly, some types of cancer also use the -oma suffix, examples including melanoma and seminoma.
YouTube Videos
Here are a couple of the many videos on YouTube about how cancer starts (and immune system/macrophages), cancer microbes, cures and other similar topics.
Cancer Website References and Terminology
To understand cancer and how it develops, here are some websites that explain many of the terms used in discussing cancer.
No comments:
Post a Comment